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Introduction

Consider a standard real-valued Brownian motion W on an interval.

Theorem (Conditional expectation of Brownian motion)
For 0 ≤ s < t , we have

E
[
Wu |Ws , Wt

] = Ws + u − s

t − s
·Ws,t , ∀u ∈ [s, t ].

 

Question
Are there better discrete approximations of W than piecewise linear?
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Introduction

The next simplest approximant would be the piecewise polynomial.

This was explored to an extent by Grebenkov, Belyaev and Jones in
their 2015 paper “A multiscale guide to Brownian motion” (see [1]).

However they only prove the following theorem from [2] when n ≤ 2.

Theorem (Brownian motion as a polynomial with added noise)
Consider a standard Brownian motion W over the unit interval [0,1].
Let W n be the unique n-th degree polynomial with a root at 0 and∫ 1

0
uk dW n

u =
∫ 1

0
uk dWu , for k = 0, 1, · · · , n −1.

Then W =W n +Z n , where Z n is a centred Gaussian process that is
independent of W n .
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Introduction

In fact, we will be proving a stronger (and more useful) result which
is a “polynomial” Karhunen-Loève theorem for the Brownian bridge.

To achieve this, let B denote the standard Brownian bridge on [0, 1]

and consider the Borel measure µ given by

µ(a,b) :=
∫ b

a

1

x(1−x)
d x , for all open intervals (a , b) ⊂ [0, 1].

It’s also worth mentioning that B is a square µ-integrable process as

E

[∫ 1

0
(Bs)2 dµ(s)

]
=

∫ 1

0
E
[
(Bs)2] dµ(s) =

∫ 1

0
s(1− s) · 1

s(1− s)
d s = 1.
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Main result

Theorem (A Karhunen-Loève theorem for the Brownian bridge)
There exists a family of polynomials

{
ek

}
k≥1 with deg(ek ) = k+1 and∫ 1

0
ei e j dµ = δi j ,

such that

B =
∞∑

k=1
Ik ek ,

where
{

Ik
}

denotes the collection of independent centered Gaussian
random variables with

Ik :=
∫ 1

0
Bt · ek (t )

t (1− t )
d t ,

and

Var(Ik ) = 1

k(k +1)
.
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Proof of main result

As with the standard argument, we define an integral operator from
the Brownian bridge’s covariance function KB (s, t ) := min(s, t ) − st .

TK : L2 (
[0,1],µ

)→ L2 (
[0,1],µ

)
,

(TK f )(t ) :=
∫ 1

0
KB (s, t ) f (s)dµ(s).

Since TK is continuous, we can apply Mercer’s theorem for kernels.

This tells us that there is an orthonormal set {ek }k≥1 of L2([0,1], µ)

consisting of eigenfunctions for TK and the associated sequence of
eigenvalues {λk }k≥1 is non-negative [3]. Moreover, any eigenfunction
with non-zero eigenvalue is continuous and KB can be expressed as

KB (s, t ) =
∞∑

k=1
λk ek (s)ek (t ) . (1)
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Proof of main result

The main part is showing each ek is a polynomial with degree k +1.

TK ek = λek =⇒
∫ 1

0

min(s, t )− st

s(1− s)
ek (s)d s = λk ek (t )

=⇒
∫ t

0

1− t

1− s
ek (s)d s +

∫ 1

t

t

s
ek (s)d s = λk ek (t )

=⇒
∫ t

0

−1

1− s
ek (s)d s +

∫ 1

t

1

s
ek (s)d s = λk e ′k (t )

=⇒ − 1

1− t
ek (t )− 1

t
ek (t ) = λk e ′′k (t ).

So the eigenfunction ek satisfies the following differential equation:

λk e ′′k (t ) =− 1

t (1− t )
ek (t ). (2)
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Proof of main result

For x ∈ [0, 1], we define the function

yk (x) := e ′k

(
1

2

(
1+x

))
.

It can be shown from (2) that yk satisfies the differential equation:

(
1−x2) y ′′

k (x)−2x y ′
k (x)+ 1

λk
yk (x) = 0.

Remarkably, this is the Legendre differential equation. It now follows
from classical theory that 1

λk
= k(k +1) and yk is proportional to the

k-th Legendre polynomial.

So ek is a (normalised) shifted Jacobi polynomial with degree k +1.
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Proof of main result

The result then follows from (1) and the orthogonality of
{
ek

}
.

Similar to the standard Brownian bridge Karhunen-Loève theorem,
we can show {ek } is an optimal orthonormal basis of L2

(
[0,1],µ

)
for

approximating B by truncated series expansions with respect to the
following weighted L2(P) norm:

∥X ∥L2
µ(P) :=

√
E

[∫ 1

0
(Xs)2 dµ(s)

]
,

where X is a square µ-integrable process.
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A decomposition of Brownian motion

Brownian motion is expressible as a sum of orthogonal polynomials
with independent weights that capture specific features of the path.

 

Each weight is a sum of iterated time integrals of Brownian motion.
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Asymptotic analysis of the error processes

This polynomial approximation was independently obtained in [4].

Moreover, it was shown that the variance of the error process for
the N -th degree polynomial approximation converges to zero at a
rate of O

( 1
N

)
and approaches the semicircle 1

Nπ

p
t (1− t ) in profile.
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A Brownian polynomial (degree = 100)

These polynomials are straightforward to implement using Chebfun!

www.chebfun.org/examples/stats/RandomPolynomials.html
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Brownian polynomials (degree = 2)

For developing numerical methods, we will use the below definitions:

Definitions
The standard Brownian parabola �W denote the unique quadratic
polynomial on [0, 1] with a root at 0 and that satisfies the following:

�W1 =W1 ,
∫ 1

0
�Wu du =

∫ 1

0
Wu du .

The standard Brownian arch is the Gaussian process Z :=W −�W .
By the main theorem, Z is centered and has the covariance function

KZ (s, t ) = min(s, t )− st −3st (1− s)(1− t ), for s, t ,∈ [0, 1].
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Brownian polynomials (degree = 2)

Definitions (continued)
The rescaled space-time Lévy area of Brownian motion on [s, t ] is

Hs,t := 1

h

∫ t

s
Ws,u − u − s

h
Ws,t du ,

where h = t − s. As e1(t ) =p
6t (1− t ), we see H0,1 is equal to

p
6

6 I1

in the main result. So Hs,t ∼ N
(
0, 1

12 h
)

and is independent of Ws,t .

𝑊𝑡 

𝑊𝑠 

𝑠 𝑡 

= ℎ𝐻𝑠,𝑡 
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Applications to SDEs

Consider the (Stratonovich) stochastic differential equation given by

d yt = f0 (yt )d t + f1 (yt )◦dWt , (3)

y0 = ξ,

where the fi :Rd →Rd denote smooth bounded vector fields on Rd .

In order to simulate the above SDE on [0,T ], one typically samples
the Brownian path over a uniform partition △N = {t0 < t1 < ·· · < tN }.

Question
What is the best pathwise approximation of (3) that is measurable
with respect to a discretization of the driving Brownian motion W ?

Possible Answer

y∗
t := E

[
yt

∣∣ y0 , Wtk ,tk+1 , Htk ,tk+1 for k ∈ [0 . . N −1]
]

.
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Applications to SDEs

Question
Can we derive high order numerical methods for approximating y∗?

In order to answer this, we consider the stochastic Taylor expansion:

yt = ys + f0(ys)h + f1(ys)Ws,t +
( · · ·)W 2

s,t +
( · · ·)W 3

s,t (4)

+ ( · · ·)∫ t

s

∫ u

s
◦dWv du + ( · · ·)∫ t

s

∫ u

s
d v ◦dWu + ( · · ·)h2 + ( · · ·)W 4

s,t

+ ( · · ·)∫ t

s

∫ u

s

∫ v

s
◦dWr ◦ dWv du + ( · · ·)∫ t

s

∫ u

s

∫ v

s
◦dWr d v ◦ dWu

+ ( · · ·)∫ t

s

∫ u

s

∫ v

s
dr ◦ dWv ◦ dWu +O

(
h

5
2
)

,

where
( · · ·) denote terms involving f0, f1 as well as their derivatives.
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Applications to SDEs

Thus approximating y∗ is likely to require the following expectations

E

[∫ t

s

∫ u

s

∫ v

s
◦dWr ◦ dWv du

∣∣∣Ws,t , Hs,t

]
,

E

[∫ t

s

∫ u

s

∫ v

s
◦dWr d v ◦ dWu

∣∣∣Ws,t , Hs,t

]
,

E

[∫ t

s

∫ u

s

∫ v

s
dr ◦ dWv ◦ dWu

∣∣∣Ws,t , Hs,t

]
.

Deriving explicit formulae for the above could lead to improvements
for high order numerical methods (such as those proposed in [5, 6]).

By expressing the Brownian motion W as a (random) parabola plus
independent noise, it is possible to obtain these integral estimators!
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Applications to SDEs

Theorem (Conditional expectation of a Brownian time integral)

E

[∫ t

s
W 2

s,u du
∣∣∣Ws,t , Hs,t

]
= 1

3
hW 2

s,t +hWs,t Hs,t + 6

5
hH 2

s,t +
1

15
h2 .

Proof.
By the natural Brownian scaling, it is enough to prove this on [0, 1].

E

[∫ 1

0
W 2

u du
∣∣∣W1, H1

]
= E

[∫ 1

0

(�Wu +Zu
)2

du
∣∣∣Ws,t , Hs,t

]
=

∫ 1

0
�W 2

u du +2
∫ 1

0
�Wu E [Zu] du +

∫ 1

0
E
[

Z 2
u

]
du

=
∫ 1

0

(
uW1 +6u(1−u)H1

)2 du +2
∫ 1

0
�Wu ·0 du

+
∫ 1

0
u −u2 −3u2(1−u)2 du .

The result now follows by evaluating the above integrals.
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Numerical example: IGBM

We shall demonstrate the effectiveness of these integral estimators
by discretizing Inhomogeneous Geometric Brownian Motion (IGBM)

d yt = a
(
b − yt

)
d t +σyt dWt , (5)

where a,b ≥ 0 are mean reversion parameters and σ is the volatility.

IGBM is an example of a short rate model and has seen attention
recently in the literature as an alternative to popular models [7, 8].

Due to smooth vector fields, we can write (5) in Stratonovich form:

d yt = ã
(
b̃ − yt

)
d t +σyt ◦ dWt , (6)

where ã := a+ 1
2σ

2 and b̃ := 2ab
2a+σ2 denote the “adjusted” parameters.
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Numerical example: IGBM

 

Sample paths of IGBM computed with a = 0.1, b = 0.04 and σ= 0.6.
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Numerical example: IGBM

1. Log-ODE method (this is designed using the integral estimators)

Y log
k+1 := Y log

k e−ãh+σWtk ,tk+1

+abh

(
1−σHtk ,tk+1+σ2

(
3

5
H 2

tk ,tk+1
+ 1

30
h

))
e−ãh+σWtk ,tk+1 −1

−ãh +σWtk ,tk+1

.

2. Parabola-ODE method with 3-point Gauss-Legendre quadrature

Y para
k+1 := e−ãh+σWtk ,tk+1

(
Y para

k +ab
∫ tk+1

tk

e ã(s−tk )−σ�Wtk ,s d s

)
.

3. Piecewise linear method

Y lin
k+1 := Y lin

k e−ãh+σWtk ,tk+1 +abh
e−ãh+σWtk ,tk+1 −1

−ãh +σWtk ,tk+1

.

4. Milstein method

5. Euler-Maruyama method

 with positive part taken if necessary.

21 / 30



Numerical example: IGBM

We examine the strong and weak convergence using the estimators:

SN :=
√
E
[(

YN −Y fine
T

)2
]

,

EN :=
∣∣∣E[(

YN −b
)+ ]−E[(Y fine

T −b
)+]∣∣∣ ,

where the expectations are approximated by Monte-Carlo simulation
and Y fine

T denotes the numerical solution of (6) obtained at time T

using the log-ODE method with a “fine” step size of min
(

h
10 , T

1000

)
.

We will compute both YN and Y fine
T using the same Brownian paths.

The experiment shall use the same parameter values as [7], namely
a = 0.1, b = 0.04, σ= 0.6 and y0 = 0.06. The end time will be T = 5.
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Numerical example: IGBM

 

Figure: SN computed with 100,000 sample paths using a step size h = T
N .
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Numerical example: IGBM

 

Figure: EN computed with 500,000 sample paths using a step size h = T
N .

24 / 30



Numerical example: IGBM

Table: Estimated times for computing 100,000 sample paths that achieve
a specified accuracy using a single-threaded C++ program on a desktop.

Log-ODE Parabola Linear Milstein Euler

Estimated time to achieve 0.179 0.405 1.47 15.4 0.437
an accuracy of SN = 10−4 (s) (s) (s) (s) (days)

Estimated time to achieve 0.827 3.90 14.8 157 61.2
an accuracy of SN = 10−5 (s) (s) (s) (s) (days)

The above times were estimated from the graph and following table:

Table: Simulation times to compute 100,000 sample paths, with 100 steps
for each path, by a single-threaded C++ program on a desktop computer.

Log-ODE Parabola Linear Milstein Euler

Computation time (s) 2.44 2.95 1.48 1.18 1.17
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Conclusion and future work

We have shown that Brownian motion can be expressed as a random
polynomial (defined using certain integrals) plus independent noise.

By developing a state-of-the-art discretization of the IGBM process,
we have demonstrated this result has applications in SDE numerics.

Furthermore, this research naturally leads to various open questions:

• Can we find more explicit eigenfunctions for Brownian motion?
(e.g. by using w(x) = x or w(x) = 1

x with KW (s, t ) = min(s, t ))

• What are the most efficient Runge-Kutta methods for general
SDEs which correctly use the new estimator for triple integrals?

• Do the polynomials give optimal approximations for Lévy area?
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Thank you
for your attention!
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